Questions My answer My answer Answers	
1 What is a 'system'? An object or group of obje	ects
2 What can happen to energy? It can be stored or transfe	erred
3 What happens when a 'system' changes? Energy is transferred either	er:
into or away from	the system
between different	t objects in the system
between different	t types of energy stores
4 What is a 'closed system'? A system where neither m	natter nor energy can enter or
leave	
5 What is the net change in the total energy of a Zero	
closed system?	
6 What is the unit and unit symbol for all types of Joules, J	
energy?	
7 What is an example of energy stored as elastic A stretched or compresse	d spring
potential energy?	
	because of the kinetic energy
energy? of its particles (so everyth store)	ing has a thermal energy
9 What is another name for a thermal energy Internal energy store	
store?	
10 What is an example of energy stored as kinetic Anything that is moving	
energy?	
11 What is an example of energy stored as Any object above the group	und
gravitational potential energy?	
12What is an example of energy stored asAn object that has energy	stored due to its chemical
chemical energy? composition – e.g batterie	
	ects (i.e. two object that have
electrostatic energy? a potential difference)	
14 What is an example of energy stored as nuclear Radioactive nuclei	
energy?	
15 What are the four main ways energy can be Heating, radiation, electric	cally, mechanically
transferred between energy stores? 10 Cive on supervisit transformed	
16 Give an example of how energy is transferred By a force doing some wo	ſĸ
mechanically? 17 Give an example of how energy is transferred Light, microwaves, radio v	Mayes
through waves?	vaves
18 Give an example of how energy is transferred A complete circuit allowin	e charge to flow
electrically?	
19 What are the energy store changes when a ball Kinetic energy store decree	eases and gravitational

20	What is another way of saying 'energy transferred'?	Work done
21		The moving object has a store of kinetic energy, which is transferred to other stores when it hits the obstacle and suddenly stops. Some of these stores include elastic potential energy in squashing objects and thermal energy into the surroundings
22	What are the energy store changes when an object is accelerated by a constant force?	When a constant force is applied across a distance, work is done on the object. This work is transferred to a store of kinetic energy in the object, causing it to move
23	What are the energy store changes when a vehicle applies its brakes to slow down?	A moving vehicle has a store of kinetic energy, work is done when the brakes are applied and there is a large amount of friction. Energy is transferred to thermal energy stores.
24	What are the energy store changes when water is boiled in an electric kettle?	The kettle transfers a store of electrical energy to thermal energy, which is transferred to the water to heat it up as water has more internal energy.
25	What two measurements do you need to be able to calculate the kinetic energy store of a moving object?	Mass (in metres, m) Velocity (in metres per second, m/s)
26	What is the word equation for calculating kinetic energy?	Kinetic Energy = ½ x mass x velocity ²
27	What is the symbol equation for kinetic energy?	$E_k = \frac{1}{2} mv^2$
28	What is the word equation for calculating gravitational potential energy?	Gravitational potential energy = mass x gravitational field strength x height
29	What is the symbol equation for calculating gravitational potential energy?	$E_p = mgh$
30	What energy transfer happens when an object is falling?	Stored gravitational energy is transferred to its kinetic energy store
31	What two ways can elastic potential energy can be transferred to an object?	Stretching or squashing
32	What two measurements do you need to be able to calculate the elastic potential energy store of a squashed of stretched object?	Spring constant (in Newtons per metre, N/m) Extension or compression (in metres, m)
33		The mass of the substance, the type of material and the energy input.
34	What is the word equation that relates the change in energy of a system, mass, specific heat capacity & temperature change?	Change in thermal energy = mass x specific heat capacity x temperature change

35	What is the symbol equation that relates the change in thermal energy of a system to the factors that it depends upon?	$\Delta E = m c \Delta \theta$
36	What are the units and unit symbols of specific heat capacity?	Joules per kilogram per degree Celsius, J/kg °C
37	What is the specific heat capacity of a substance?	The amount of energy required to raise the temperature of 1 kg of the substance by 1 °C
38	What is power?	Rate of energy transfer or rate of doing work
39	What is the unit and unit symbol of power?	Watts, W
40	How much energy is transferred by 1 watt?	1 Joule per second
41	What is the word equation for power?	$Power = \frac{energy transferred}{time}$, $Power = \frac{work done}{time}$
42	What is the symbol equation for power?	$P = \frac{E}{t}$, $P = \frac{W}{t}$
43	What does dissipated mean?	Energy that is not usefully transferred
44	What is the principle of conservation of energy?	Energy cannot be created or destroyed, it can only be transferred usefully, stored or dissipated
45	What does it mean when we say that energy is "wasted"?	When energy is dissipated, so that it is stored in less useful ways
46	What is the most common form of 'wasted' energy?	Into the thermal energy stores of the surroundings
47	What does thermal conductivity mean?	The higher the thermal conductivity of a material the higher the rate of energy transfer by conduction across the material.
48	What factors affect the rate of cooling of a building?	The thickness and thermal conductivity of its walls.
49	State four ways to insulator a house	Cavity wall insulation, double glazing, Loft Insulation, draft excluders.
50	How can you reduce the amount of energy dissipated by a device?	Lubricate to reduce friction or insulate to reduce thermal energy transfer
51	What is the mathematical link between useful and wasted energy?	Total Energy In = Useful energy + Wasted Energy
52	What is efficiency?	A measure of how much energy is transferred by a device into a useful energy store.
53	How do we measure efficiency	Efficiency = <u>Useful output energy/power</u> Total input energy/power
54	What is the unit of efficiency?	Efficiency is measured as a decimal or a percentage

	Question	My answer	My answer	Answer
1	What is the source of most of			The sun
	our naturally occurring energy			
	resources?			
2	Name the three fossil fuels			Coal, oil and natural gas
3	What type of energy store do fuels have?			Chemical energy store
4	How is the energy stored in			Combustion (transferred into thermal store)
	fossil fuels released into useful			
	energy?			
5	How does a fossil fuelled power	1.		2. Fuel combusts releasing thermal energy
	station work?			3. Thermal energy used to heat water
				4. Water turns into steam and turns a turbine
				5. The turbine is connected to a generator which
				generates electricity
6	Name the three main uses of			Generating electricity, heating and transport
	fossil fuels			
7	Fossil fuels are non-renewable,			They will run out
	what does it mean?			
8	Why is burning fossil fuels bad			They release CO ₂ and sulfur dioxide into the atmosphere
	for the environment?			
9	Why is carbon dioxide bad for			It is a greenhouse gas and contributes to global warming
	the environment?			
10				It causes acid rain
	environment?			
11	What are the other			Coal mining causes disruption to the landscape. Oil
	disadvantages of using fossil			spillages cause serious environmental problems
	fuels, other than the gases			
	released?			
12	What are the two main nuclear			Uranium and plutonium
12	fuels?			
13				Does not release greenhouse gases
1.4	fuel?			Dreduces avaloes wests which is boud to disperse of
14	8			Produces nuclear waste which is hard to dispose of
4 5	with nuclear power?			Color wind wave and hisfuels
15	State four renewable energy			Solar, wind, wave and biofuels
	resources directly linked to the			
L	sun's energy			

16	What other renewable energy resources are there that don't rely on the sun?	Geothermal, tidal
17	Where does geothermal energy come from?	Volcanic regions or where hot rocks that are near the surface
18	Give two advantages of geothermal energy	Very reliable and causes very little environmental damage
19	Give two disadvantages of geothermal energy	Very limited availability, very expensive to build power plants
20	How does hydro-electric power generate electricity?	Water falling from height spins a turbine, connected to generator
21	Give two benefits of hydro- electric power	Immediate response to a sudden demand (no start up time) Very reliable
22	Give two disadvantages of hydro-electric power	Loss of habitat when dams are built, very expensive to build
23	What is the difference between a solar cell and solar panel/heater?	Solar cells use light energy to generate electricity and solar panels use heat from the sun heat water
24	Why are wind turbines and solar cells unreliable?	They depend on the weather
25	What are the advantages of both wind turbines and solar cells?	Produce no pollution (i.e. carbon dioxide), no fuel costs
26	What are the disadvantages of wind turbines?	Power output is unreliable, can be noisy, cause visual pollution
27	What is a bio-fuel?	A fuel made from plant material or animal waste
28	What is meant by the term "carbon neutral"?	Activities that do not add extra CO ₂ into the atmosphere
29	Bio-fuels made from plants are said to be carbon neutral why?	CO ₂ released when the fuel burns is removed from the atmosphere when the plants grow
30	What is a disadvantage of bio- fuels?	Loss of habitat used to grow plants for bio-fuels, land could be used for growing crops for food instead
31	Give three reasons for using more renewable energy in the future	Non-renewables are running out Combat global warming Higher demand for energy due to population growth
32	What are the main reasons we are not using more renewable fuels?	They are expensive to build and companies/governments don't want to pay. Infrastructure for fossil fuels is already there Many renewable energy resources are unreliable

	Question	My answer	My answer	Answer
1	What is the particle model useful			To explain the states of matter and the differences in
	for?			their density: solids are denser than gases as there are
				more particles in a given volume than gases have.
2	What are the limitations of using			No movement shown, atoms not solid spheres, no
	the particle model?			forces shown, only in 2D
3	Draw a particle diagram for solid, liquid and gas.			Gas Liquid Solid
4	How are particles arranged in solids?			Close together, held in a fixed, regular arrangement
5	What are the forces of attraction like in solids?			Strong
6	How do particles move in solids?			Vibrate about a fixed position
7	How are particles arranged in liquids?			Close together, <u>irregular</u> arrangement
8	What are the forces of attraction like in liquids?			Weaker than solids, allowing particles to move
9	How do particles move in liquids?			Slow moving, random directions
1 0	How are particles arranged in gases?			Far apart, not touching
1 1	What are the forces of attraction like in gases?			No forces
1 2	How do particles move in gases?			High speed, random directions
1 3	What is the definition of density?			The amount of matter in a given volume. (mass per unit volume)
1	What is the word equation for			density = <u>mass</u>
4	density?			volume
1	What is the symbol equation for			$\rho = \frac{m}{m}$
5	density?			$ \rho = \frac{1}{V} $
1	What are the common units of			kg/m ³
6	density?			

	ibe how to find the volume of ular solid.	 Use a ruler to measure the length, width and height of the object in metres Find the volume by multiplying the <i>l x w x h</i> Place the object on a balance to find the mass in kilograms
	ibe how to find the volume of egular solid.	 Find the density by dividing the mass by the volume Place the object on a balance to find its mass. Place the object into a measuring cylinder filled with water. Measure how much the volume in the measuring cylinder increases; this is the volume of the object Find the density by dividing the mass by the volume.
1 Descr 9 a liqui	ibe how to find the volume of id.	 Place a measuring cylinder on a balance and make sure the balance reads zero Pour a set volume of the liquid into the measuring cylinder (10ml) Calculate the density of the liquid by dividing the mass by the volume
0 used t	other equipment could be to measure length, if required nore precise value?	A micrometre or a set of Vernier callipers.
2 What 1	is a physical change?	One in which the material recovers its original properties if the change is reversed
2 When 2	n is mass conserved?	During changes of state which are examples of physical changes
2 What 3	is a change of state?	If a substance is heated enough, the particles will have enough energy in the kinetic energy stores to break the bonds holding them together, changing the properties of the substance
2 What 4	change of state is melting?	Solid → liquid
	change of state is freezing?	Liquid \rightarrow solid
	change of state is g/evaporating?	Liquid → Gas
	change of state is ensing?	Gas → Liquid

2	What change of state is	Solid \rightarrow Gas / Gas \rightarrow Solid
8	sublimating?	
2	What is internal energy?	The total kinetic energy and potential energy stored
9		inside a system by the particles that make up the
		system.
3	How does heating an object change	It increases the energy of the particles that make up the
0	the internal energy?	system to either increase the temperature or cause a
		change of state.
3	What does the increase in	The mass of the substance, the type of material and the
1	temperature of a system depend	energy input.
	on?	
3	What is the word equation that	Change in thermal energy = mass x specific heat
2	relates the change in energy of a	capacity x temperature change
	system, mass, specific heat capacity	
_	& temperature change?	
3	What is the symbol equation that	$\Delta E = m c \Delta \theta$
3	relates the change in thermal	
	energy of a system to the factors	
2	that it depends upon?	loulos por kilogrom por dogroo Colcius, 1/kg °C
3	What are the units and unit symbols of specific heat capacity?	Joules per kilogram per degree Celsius, J/kg °C
4	What is the specific heat capacity of	The amount of energy required to raise the temperature
5	a substance?	of 1 kg of the substance by 1 °C
3	What is latent heat?	The amount of energy needed for a substance to change
6		state
3	What happens to the energy	It increases the potential energy stored but not the
7	supplied to a substance when it	kinetic energy store of the particles
	changes state?	
3	What is the specific latent heat of a	The amount of energy required to change the state of 1
8	substance?	kg of the substance with no change in temperature
3	What is the word equation for the	Energy needed for a change of state = mass × specific
9	energy needed for a change of state	latent heat
	of a substance?	
4	What is the symbol equation for the	E = m L
0	energy for a change of state?	
4	What is the unit and unit symbol of	Joules per kilogram, J/kg
1	specific latent heat?	

4	What is the specific latent heat of	The change of state from solid to liquid
2	fusion?	
4	What is the specific latent heat of	The change of state from liquid to vapour (gas)
3	vaporisation?	
4	Label this heating graph:	A – solid
5	100	B – melting (solid to liquid)
	DE	C – liquid
	⁶⁰	D – boiling (liquid to gas)
	$T \circ C$ C C	E – gas
	-20 -	
	-60 B	
	-100	
	Heat Added \longrightarrow	
4	What is the temperature of a gas	The average kinetic energy of the particles in the gas.
6	related to?	Higher the temperature, the higher the average kinetic
		energy
4	How can we increase the speed and	Increase temperature and/or decrease volume
7	frequency of collision in a	
	container?	
4	What happens to the pressure of a	Increases
8	gas, held at constant volume, when	
	the temperature is increased?	
4	What happens to the pressure of a	Decreases
9	gas, held at constant temperature,	
	when the volume is increased?	

No.	Question	My answer	My answer	Answer
1	Label these curcuit symbols:			o switch (open) lamp
	$-\infty$ $-\otimes$ -			
				voltmeter
	-+ (-)			_+ ⊢ battery (A) ← ammeter
				- diode
				- resistor
				- variable resistor - LDR
2	What is electricity?			A form of energy
3	What is electrical current?			The rate of flow of electrical charge
4	In most circuits, what is the charge			Electrons
	that flows to carry the current?			
5	What is needed for electrical charge to			A source of potential difference.
	flow through a closed circuit?			
6	What is a circuit diagram?			Simplified circuit drawings using symbols
7	What is a series circuit?			A circuit where all of the components are
				connected in one loop.
8	Draw a series circuit containing a cell			
	and a bulb.			
9	What is the parallel circuit?			A circuit where there is more than one loop of
				components.

10	Draw a parallel circuit containing a cell and two bulbs.	
11	What can you say about the current anywhere in a series circuit?	It stays the same
12	What happens to the current in a parallel circuit?	It is shared between the branches but the total stays the same
13	What happens if there is a break in a series circuit?	The current stops flowing
14	What happens if there is a break in one branch of a parallel circuit?	The current stops in that branch only
15	What is the word equation for flow of charge?	charge flow = current x time
16	What is the symbol equation for flow of charge?	Q = I t
17	What is the unit and unit symbol of charge?	Coulombs, C
18	What is the unit and unit symbol of current?	Amps, A
19	What piece of equipment is used to measure current?	Ammeter
20	How are ammeters arranged in a circuit?	In series
21	What is the direction of conventional current?	Positive to negative
22	What is another name for potential difference?	Voltage
23	What is potential difference?	The amount of energy lost or gained by one unit of charge
24	What is the unit and unit symbol of potential difference?	Volts, V
25	What piece of equipment is used to measure potential difference?	Voltmeter

26	How are voltmeters arranged in a circuit to measure the potential difference?	In parallel to the component you are measuring
27	What happens to the potential difference in series circuit?	It is shared between the components
28	What should all of the potential differences add up to in a series circuit?	The potential difference of the battery
29	What happens to the potential difference in a parallel circuit?	The total potential difference across each branch is the same as the potential difference from the battery
30	What equation links potential difference, current & resistance?	potential difference = current x resistance
31	What is the symbol equation for potential difference?	V = I R
32	What is resistance?	Anything in a circuit that slows down the flow of current
33	What is the unit and unit symbol of resistance?	Ohms, Ω (omega)
34	What do we call materials with a low resistance?	Conductors
35	What do we call materials with a high resistance?	Insulators
36	What is the job of a battery in a circuit?	Is the source of the potential difference (Provides the energy)
37	What happens if you add more batteries to a circuit?	More current will flow, the current will increase
38	What happens to the resistance if you add more resistors in series?	it increases
39	What happens to the resistance if you add more resistors to each branch in parallel?	Total resistance decreases
40	In the required practical on measuring resistance, what is the dependent variable?	Resistance
41	For some resistors, the resistance always remains constant. In others, it can change as	The current changes.

42	At a constant temperature, the current through an ohmic conductor is	Directly proportional to the potential difference across the resistor.
43	What does the I-V graph for an ohmic conductor look like?	Current Potential difference
44	What does it mean that a component is "ohmic"?	Resistance remains constant as current changes.
45	What happens to the resistance of a filament lamp as the potential across the lamp increases?	It increases.
46	Why does the resistance of a filament lamp increase as the potential difference across it increases?	The wire heats up so particles move faster, getting in the way of moving charges more often
47	What does the I-V graph for a filament lamp look like?	Current Potential difference
48	Describe the current flow through a diode.	It can only flow in one direction. There is a very high resistance in the reverse direction.
49	What does the I-V graph for a diode look like?	Current Potential difference
50	Why does a diode only allow current to flow in one direction?	The particles act like a valve, only allowing charges to travel in one direction
51	What is a thermistor?	A temperature dependent resistor
52	What happens to the resistance of a thermistor when the temperature increases?	It decreases

53	Why does resistance of a thermistor decrease when the temperature increases?	Thermal energy helps the particles to line up and allow charges through more easily
54	What does a resistance-temperature graph look like for a thermistor?	Characteristics
55	When would a thermistor be useful?	Thermostats – to make things change with temperature
56	What is an LDR?	A Light Dependent Resistor
57	What happens to the resistance of an LDR when the light intensity increases?	It decreases
58	Why does resistance of an LDR decrease when the light intensity increases?	Light energy helps the particles to line up and allow charges through more easily
59	What does a resistance-light intensity graph look like for a LDR?	Light level (Bag)
60	When would an LDR be useful?	Light sensors - to switch on lights when it gets dark
61	To measure the resistance of a component, what measurements should be made?	Measurements of the current through the component and the potential difference across it.
62	Draw a circuit to show how the resistance of a resistor could be measured?	
63	In the required practical on investigating I-V characteristics of components, what is the independent variable?	The current through the component
64	What happens to the potential difference across a wire when the length of the wire increases?	The longer the wire, the higher the resistance

65	In a series circuit, what can be said	The current is the same through each
	about the current?	component.
66	In a series circuit, what can be said	The sum of the potential difference across each
	about the potential difference?	component is equal to the potential difference of
		the battery
67	In a series circuit, what can be said	The total resistance is the sum of the individual
	about the resistance?	resistances.
68	What is the equation for the total	$R_{tot} = R_1 + R_2 \dots$
	resistance of a series circuit?	
69	In the branches of a parallel circuit,	The total current is equal to the sum of the
	what can be said about the current?	current in each branch
70	In the branches of a parallel circuit,	The potential difference across each branch is the
	what can be said about the potential	same and the battery
	difference?	
71	In the branches of a parallel circuit,	The total resistance in the circuit is less than the
	what can be said about the resistance?	resistance of the lowest of the resistor in any
		branch
72	Why does adding resistors in parallel	There are more routes for electrons to take
	decrease the total resistance?	between the branches, so it is easier for current
		to flow.

<u>Physics Unit 2 (part 2) – Electricity (mains) II</u>

No.	Question	My answer	My answer	Answer
1	What does DC stand for?			Direct Current
2	In what direction does DC current			Current flows in one direction (positive to
	flow?			negative for conventional current)
3	What type of circuits use DC?			Circuits powered by a cell or battery
4	What does AC stand for?			Alternating Current
5	Describe the flow of current in an AC			The current flow rapidly changes direction, giving
	circuit			an alternating potential difference.
6	What type of current does mains			Alternating current
	electricity use?			
7	What the frequency of the AC			50 Hz, (50 cycles per second)
	domestic electricity supply in the UK?			
8	What is the potential difference of			230 V
	the domestic electricity supply in the			
	UK?			

9	How many wires make up the cables of most electrical appliances?	3
10	Why is each wire wrapped in a plastic coating?	As a safety feature. The plastic acts as an insulator from the electricity
11	What does the colour coding on each wire identify it as?	Brown - live wire Blue - neutral wire Green and yellow stripes - earth wire
12	What does the live wire do, and what is its potential?	It carries the alternating potential from the power supply. The potential difference between the live wire and earth is around 230 V.
13	What does the neutral wire do, and what is its potential?	It completes the circuit, and is close to earth potential (0 V).
14	What does the earth wire do, and what is its potential?	It is a safety wire to stop the casing of the appliance from becoming live, so is at OV and only carries a current if there is a fault.
15	When is a live wire dangerous?	They are always dangerous when a current is flowing, because they carry a potential of 230V.
16	Why is it dangerous to touch a live wire?	A persons potential is 0V. Touching the live wire causes a potential difference of 230V and the charge is carried through the person.
17	What is power?	The amount of energy transferred per second
18	What is the unit of power and the unit symbol?	Watts, W
19	What does the amount of energy an appliance transfers depend on?	The power of the appliance and how long it is switched on for.
20	What does work have to do with electric circuits?	Work is done when charge flows in a circuit.
21	What two word equations relate energy transferred, power, time, charge and potential difference?	energy transferred = power x time energy transferred = charge x potential difference
22	What two symbol equations relate energy transferred, power, time, charge and potential difference?	E = P t E = Q V
23	What is the unit and unit symbol of energy?	Joules, J
24	What is the power transfer in a circuit related to?	The potential difference across the circuit, the current through it and the energy changes over time.
25	What two word equations relate power, potential difference, current and resistance?	power = potential difference x current power = (current) ² x resistance

26	What two symbol equations relate	P = V I
	power, potential difference, current and resistance?	$P = I^2 R$
27	What does the power rating of an appliance mean?	The maximum operating power that is safe for the appliance.
28	What is the National Grid?	The National Grid is a system of cables and transformers linking power stations to consumers.
29	What is a transformer?	A device which alters the potential difference and current of electricity in the cables.
30	What does a step-up transformer do?	They are used to increase the potential difference from the power station to the transmission cables
31	Why do we increase the potential difference across the cables?	To decrease current and reduce the energy loss due to heating.
32	What does a step-down transformer do?	They are used to decrease the potential difference for safe domestic use.
33 Triple	Why is static-electricity called "static"?	It is related to "static" (or still) electrons which build up on materials.
34 Triple	What type of charge do electrons have?	Negative charge
35 Triple	How is static electricity produced?	When certain insulating materials are rubbed, the friction causes negatively charged electrons to move from one material to another
36 Triple	Which sub-atomic particle is transferred between materials to generate a static charge	Negatively charged electrons
37 Triple	If a material gains electrons what charge will it have?	The material that gains electrons becomes negatively charged.
38 Triple	If a material loses electrons what charge will it have?	The material that loses electrons is left with an equal positive charge.
39 Triple	What happens when electrically charged objects are brought close together?	When two electrically charged objects are brought close together they exert a force on each other.
40 Triple	What is the name of the force that exists between charged objects and what type of force is it?	Electrostatic, Non-contact (the objects do not need to touch)
41 Triple	What happens to two objects with the same type of charge?	They repel each other.
42 Triple	What happens to two objects with different types of charge?	They are attracted to each other.

43 Triplo	What is an electric field?	A field created around a sphere of charge
Triple 44 Triple	What happens if another charged object is placed in the field?	A second charged object placed in the field experiences a force.
45 Triple	Where is the charge strongest in an electric field?	The closer an object is to the charged sphere, the stronger the force
46 Triple	In what direction do field lines flow in a positive and negative charge?	Out of a positive object, into a negative object
47 Triple	How do field lines show the strength of a field?	The closer the lines the stronger the field
48 Triple	What would the field lines look like round isolated, charged spheres?	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$
49 Triple	What does the electric field pattern look like for a positive charge near a negative charge?	
50 Triple	When will static cause a spark?	If there is a high enough potential difference between a charged object and the earth/earthed object (0V)
51 Triple	What causes the spark?	An electric field occurs between the charged object and the earth object. Air particles in the electric field are ionised (electrons are removed) Ionised air is a conductor and so a current flows between the charged object and the earthed object

Core Questions – Physics unit 4 - Atomic Structure

No.	Question	My answer	My answer	Answer
1	What did scientists think about atoms before the discovery of the electron?			They were tiny spheres that could not be broken up
2	Which sub-atomic particle did JJ Thomson discover?			Electrons
3	What model did JJ Thomson use, following the discovery of an electron, to describe the structure of an atom?			Plum pudding model
4	How did Thomson describe an atom?			Spheres of positive charge with tiny negative electrons stuck in them
5	Which sub atomic particle was discovered by Rutherford and Marsden?			Protons
6	Describe the experiment Rutherford and Marsden did			Fired alpha particles at a thin piece of gold foil.
7	If the plum pudding model was correct what should have happened to the alpha particles when fired at the gold foil?			Pass straight through or be deflected only slightly
8	What did happen to the alpha particles when fired at the gold foil?			Most passed straight through, some were deflected more than expected and some were deflected backwards off the foil.
9	What new ideas about the atom were concluded from the gold foil experiment?			 Most of the mass was in the centre of atom in a tiny nucleus The nucleus had a positive charge Most of the atom is empty space
10	What name was given to the model of the atom following the gold foil experiment?			The nuclear model
11	How was the atom described in the first nuclear model?			A positively charged nucleus surrounded by a <i>cloud</i> of electrons
12	How did the work of Niels Bohr improve the nuclear model?			He suggested that electrons orbit the nucleus at specific distances
13	How did Bohr realise that his suggestions were correct?			His theoretical calculations agreed with experimental observations
14	What did later experiments show that led to the understanding of protons?			Scientists discovered that the positive charge of a nucleus can be divided into a whole number of smaller particles that each have the same positive charge.

15	Which sub-atomic particle was identified by James Chadwick?	The neutron
16	What is the current model of an atom?	There is a positively charged nucleus (made up of protons and neutrons), surrounded by negatively charged electrons.
17	Where is most of the mass of the atom?	In the nucleus
18	What is the average radius of an atom	1 X 10 ⁻¹⁰ m or 0.1nm (nanometres)
19	How big is the radius of the nucleus?	It is less than 1/10,000th of the radius of the atom.
20	What are energy levels?	The electrons are arranged at different distances from the nucleus in "energy levels" which are sometimes called "shells".
21	What happens to an electron if it absorbs EM radiation?	They move up an energy level, further away from the nucleus
22	What happens when an electron emits EM radiation?	They move to a lower energy level, closer to the nucleus
23	What happens if one or more electrons leave an atom?	Atom becomes a positive ion
24	What does the proton or atomic number tell you about an atom?	What element it is
25	What does the mass number tell you about an atom?	The number of protons plus the number of neutrons in a the nucleus of an atom
26	What are isotopes?	Atoms of the same element with a different number of neutrons
27	Some isotopes are unstable, what does this mean?	They decay into other elements by emitting radiation
28	What is radioactive decay?	Unstable nuclei give out radiation as they change to become more stable
29	What is the "activity" of a radioactive source?	It is the rate at which a source of unstable nuclei decays
30	What key word can be used to describe the nature of radioactive decay?	Random
31	Name the four types of radiation emitted by unstable isotopes	Alpha, beta, gamma and neutrons
32	Alpha, beta and gamma radiation is ionising. What does it mean?	Knocks electrons off atoms creating positive ions.
33	What is the symbol for an alpha particle?	α
34	What does an alpha particle consist of?	2 protons and 2 neutrons
35	What is another name for an alpha particle?	Helium nucleus
36	How far can alpha particles travel in air?	A few centimetres

37	What materials can absorb alpha particles and stop them travelling?	Paper and skin
38	Is the ionising power of alpha particles strong or weak? Give a reason	Strong due to their big size and positive charge
39	Name a use of alpha radiation	Smoke Detector
40	What is the symbol for beta particle?	β
41	What is a beta particle?	A fast moving electron emitted by the nucleus of an atom
42	How far can beta travel through air?	A few metres
43	How ionising are beta particles?	Moderately (less than alpha, more than gamma)
44	What is an example of material that can absorb beta radiation?	Thin sheet of aluminium
45	How can an electron be emitted from the nucleus of an atom?	A neutron splits into a proton and an electron, the proton stays in the nucleus.
46	What is a use of beta radiation?	Testing the thickness of sheets of paper or metal
47	What is gamma radiation?	High frequency waves of electromagnetic radiation
48	How ionising are gamma waves?	Weakly
49	How far can gamma waves through air?	Very far
50	What materials can absorb gamma radiation?	Very thick lead or Concrete
51	Give two uses of gamma radiation?	Medical tracers and radiotherapy
52	What is a nuclear equation?	It shows radioactive decay using element symbols
53	What must be true about a nuclear equation?	Total mass and atomic numbers must be equal on both sides.
54	What happens to the mass and atomic number of an element after alpha decay?	Mass number decreases by 4 Atomic Number decreases by 2
55	How is an alpha particle represented in a nuclear equation?	⁴ ₂ He
56	Write an equation for the alpha decay of radon-219 (proton number 86)	$\stackrel{^{219}}{_{86}} radon \longrightarrow \stackrel{^{215}}{_{84}} polonium + \stackrel{^{4}}{_{2}} He$
57	What happens to the mass and atomic number of an element after beta decay?	Mass number stays the same Atomic number increases by 1
58	How is a beta particle represented in a nuclear equation?	-1 e
59	Write an equation for the beta decay of carbon-14 (proton number 6).	$^{14}_{6}$ carbon $\longrightarrow ^{14}_{7}$ nitrogen + $^{0}_{-1}$ e
60	Gamma radiation does not have a nuclear equation, why?	No particle is lost from the nucleus, just energy

61	What piece of equipment measures	Geiger-Muller Tube and Counter (Geiger
	radiation?	Counter)
62	What is the count-rate?	It is the number of decays recorded each second by a detector (such as a Geiger-Muller tube).
63	What is the unit and unit symbol for radioactivity?	Becquerels, Bq
64	Define the term half-life?	The time taken for the number of radioactive nuclei in an isotope to halve or The time taken for the radioactive count-rate to halve
65	What happens to the half-life of a source over time?	It stays the same
66	Why are sources with a short half-life dangerous?	The isotopes are very unstable and decay rapidly releasing a high amount of radiation very quickly
67	Why are sources with a long half-life dangerous?	They emit radiation over a very long period of time
68	What is the shape of all half-life graphs?	A downwards curve.
69	How do you use a half-life graph to find the half-life value?	Halve the initial activity on the y-axis Draw a line horizontally over to the curve Draw a line vertically down from the curve to the x-axis Read the time off the x-axis
70	What is the half-life of this substance?	2 days
71	What is radioactive contamination?	The unwanted presence of materials containing radioactive atoms on other materials.
72	Why is radioactive contamination dangerous?	Due to the decay of the contaminating atoms. The type of radiation emitted affects the level of hazard.
73	What is irradiation?	Exposure to a radiation without physical contact to a radioactive source. The irradiated object does not become radioactive.
74	What precautions should people take when working with radioactive substances?	Distance, gloves, suits, screens, minimise exposure time

75	Which type of sources are most dangerous outside of the body and why?	Beta and Gamma as they emit radiation that can penetrate the skin
76	Why is an alpha source very dangerous inside of the body?	Alpha radiation is trapped inside the body and is very localised (does not travel very far)
77	How does radiation damage living tissue?	It ionises atoms and molecules inside cells.
78	What does a high dose of radiation do to a living cell?	Kills it
79	What damage can lower level doses do to cells	Mutate the DNA which may lead to cancer
80	Why is it important for the findings of studies into the effects of radiation on humans to be published and shared with other scientists?	So that the findings can be checked by peer- review and shared more widely if important.