Topic: Further Quadratics

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
		x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a , b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions:
		$2x^3 - 5x^2$
		9x - 1
2. Factorising	When a quadratic expression is in the form	$x^2 + 7x + 10 = (x+5)(x+2)$
Quadratics	$x^2 + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
	to give b and multiply to give c.	multiply to give 10)
		2 2 2 4 24
		$x^2 + 2x - 8 = (x+4)(x-2)$
		(because +4 and -2 add to give +2 and
2 D:cc		multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x+5)(x-5)$
of Two Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a	$x = \pm 7$
(ux - b)	negative solution.	$x = \pm 7$
5. Solving	Factorise and then solve = 0 .	$x^2 - 3x = 0$
Quadratics		x(x-3)=0
$(ax^2 + bx =$		x = 0 or x = 3
$ \hat{0}\rangle$		
6. Solving	Factorise the quadratic in the usual way.	Solve $x^2 + 3x - 10 = 0$
Quadratics by	Solve = 0	
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(a = 1)	Make sure the equation $= 0$ before	x = -5 or x = 2
	factorising.	
7. Quadratic	A 'U-shaped' curve called a parabola.	y ↑ y = x²-4x-5
Graph	The equation is of the form	
	$y = ax^2 + bx + c$, where a, b and c are	
	numbers, $a \neq 0$.	-1 5 x
	If $a < 0$, the parabola is upside down .	
0.7	1	(2, [-9)
8. Roots of a	A root is a solution .	4
Quadratic	The roots of a guadratic and the se	
	The roots of a quadratic are the x- intercepts of the quadratic graph	
	intercepts of the quadratic graph.	
		2 /-1 1 2 3 4
		/ 4
		4
	1	

9. Turning	A turning point is the point where a	
Point of a	quadratic turns.	
Quadratic	quadratic turns.	
Quadratic	On a positive parabola , the turning point is	
	called a minimum .	\ / /
	On a negative parabola , the turning point	
	is called a maximum .	
10 Factorising		Factorise $6x^2 + 5x - 4$
10. Factorising Quadratics	When a quadratic is in the form $ax^2 + bx + c$	Factorise ox $+ 3x - 4$
when $a \neq 1$		$1.6 \times -4 = -24$
when $\alpha \neq 1$	1. Multiply a by c = ac	
	2. Find two numbers that add to give b and	2. Two numbers that add to give +5 and
	multiply to give ac.	multiply to give -24 are +8 and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x+4)-1(3x+4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of	
44 0 1 1	the factors outside each of the two brackets.	
11. Solving	Factorise the quadratic in the usual way.	Solve $2x^2 + 7x - 4 = 0$
Quadratics by	Solve = 0	
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
1.0	factorising.	2 0 1
12.	A quadratic in the form $x^2 + bx + c$ can be	Complete the square of
Completing	written in the form $(x+p)^2+q$	$y = x^2 - 6x + 2$
the Square		Answer:
(when $a = 1$)	1. Write a set of brackets with x in and half	$(x-3)^2-3^2+2$
	the value of b.	
	2. Square the bracket.	$=(x-3)^2-7$
	3. Subtract $\left(\frac{b}{2}\right)^2$ and add c .	
	(2)	The minimum value of this expression
	4. Simplify the expression.	occurs when $(x-3)^2 = 0$, which
	You can use the completing the square	occurs when $x = 3$
	form to help find the maximum or	When $x = 3$, $y = 0 - 7 = -7$
	minimum of quadratic graph.	
10		
13.	A quadratic in the form $ax^2 + bx + c$ can	Complete the square of
Completing	be written in the form $\mathbf{p}(x+q)^2 + r$	$4x^2 + 8x - 3$
the Square		Answer:
(when $a \neq 1$)	Use the same method as above, but	$4[x^2 + 2x] - 3$
	factorise out a at the start.	$= 4[(x+1)^2 - 1^2] - 3$
		$=4(x+1)^2-4-3$
		$= 4(x+1)^2 - 7$ Solve $x^2 + 8x + 1 = 0$
14. Solving	Complete the square in the usual way and	Solve $x^2 + 8x + 1 = 0$
Quadratics by	use inverse operations to solve.	
Completing		Answer:
the Square		$(x+4)^2 - 4^2 + 1 = 0$
		$(x+4)^2 - 15 = 0$
-		

		$(x+4)^2 = 15$
		$(x+4) = \pm \sqrt{15}$
		$x = -4 \pm \sqrt{15}$
15. Solving	A quadratic in the form $ax^2 + bx + c = 0$	Solve $3x^2 + x - 5 = 0$
Quadratics	can be solved using the formula:	
using the	$-b \pm \sqrt{b^2 - 4ac}$	Answer:
Quadratic	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	a = 3, b = 1, c = -5
Formula	Use the formula if the quadratic does not	
	factorise easily.	$-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}$
		$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$
		4 1 /54
		$x = \frac{-1 \pm \sqrt{61}}{6}$
		6
		$x = 1.14 \ or - 1.47 \ (2 \ d.p.)$