Topic: Vectors

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	Q 3 3 4 4 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2. Vector Notation	A vector can be written in 3 ways: a or \overrightarrow{AB} or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude . $\overrightarrow{AB} = -\overrightarrow{BA}$	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
5. Magnitude	Magnitude is defined as the length of a vector.	3 Magnitude (length) can be calculated using Pythagoras Theorem: 3² + 4² = 25 J25 = 5
6. Equal Vectors	If two vectors have the same magnitude and direction , they are equal .	
7. Parallel Vectors	Parallel vectors are multiples of each other.	2 a + b and 4 a +2 b are parallel as they are multiple of each other.

0 0 11		
8. Collinear Vectors	Collinear vectors are vectors that are on the same line. To show that two vectors are collinear, show that one vector is a multiple of the other (parallel) AND that both vectors share a point.	A C
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other.	if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	Example: $3a + 2b =$ $= 3\binom{2}{1} + 2\binom{4}{-1}$ $= \binom{6}{3} + \binom{8}{-2}$ $= \binom{14}{1}$
11. Vector Geometry	$\overrightarrow{OA} = a \overrightarrow{AO} = -a$ $\overrightarrow{OB} = b \overrightarrow{BO} = -a + b = b - a$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b = b - a$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b = b - a$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OA} = -b + a = a - b$	Example 1: X is the midpoint of AB. Find \overrightarrow{OX} Answer: Draw X on the original diagram \overrightarrow{O} \overrightarrow{O} \overrightarrow{O} \overrightarrow{O} \overrightarrow{A} Now build up a journey. You could use $\overrightarrow{OX} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$. This will give: $\overrightarrow{OX} = a + \frac{1}{2}(b-a)$. This will simplify to $\frac{1}{2}a + \frac{1}{2}b$ or $\frac{1}{2}(a+b)$